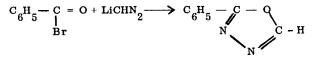

SYNTHESIS OF 3, 4-DIARYL-1, 2, 4-TRIAZOLES FROM

DIARYLIMIDOYL CHLORIDES AND DIAZOMETHYLLITHIUM.

Dennis N. Kevill^{**} and Myong-Gi A. Park Department of Chemistry, Northern Illinois University, DeKalb, Illinois 60115.


Imidoyl chlorides react readily with azide ion $(\overline{N} = \overline{N} = \overline{N})$ to give 1, 5-disubstituted tetrazoles¹ and we have investigated the synthetic utility and regioselectivity of parallel reactions with the isoelectronic diazomethyl ion $(\overline{CH} = \overline{N} = \overline{N})$, supplied as diazomethyllithium², which could lead to disubstituted-triazoles.

If nucleophilic attack by diazomethyllithium upon diarylimidoyl chlorides is followed by cyclization, initial attack by the nitrogen terminus will lead to 3, 4-diaryl-1,2,4-triazoles (1) and initial attack by the carbon terminus to 1, 5-diaryl-1,2,3-triazoles (2)

The probable regionselectivity can be predicted from a consideration of previously studied reactions at the analogous sp^2 hybridized carbon of acyl halides (RCOX). The parent diazomethane reacts to give high yields of the diazoketones (RCOCHN₂) formed with nucleophilic attack by the carbon terminus ³

but diazomethyllithium has been found to react with benzoyl bromide to give a 35% yield of 2-phenyl-1,3,4-oxadiazole⁴, formed <u>via</u> initial nucleophilic attack by the nitrogen terminus:

By analogy, use of diazomethyllithium, rather than diazomethane, should favor formation of <u>1</u>. Although triazoles <u>2</u> can be conveniently constructed by a variety of reactions, incorporating within the 1,2,3-triazole ring the three nitrogen atoms of an aryl azide⁵, only two methods for synthesis of <u>1</u> have been reported.^{6,7}

We prepared an ether solution of diazomethyllithium in 70% yield ²,⁸ by interaction of diazomethane and methyllithium. The appropriate diarylimidoyl chloride⁹ dissolved in methylene chloride (<u>ca</u> 0.5 <u>M</u>) was added, with stirring and in one portion, to an equimolar amount of the diazomethyllithium solution in ether (<u>ca</u> 0.4 <u>M</u>), at 0^o for systems <u>a</u>, <u>b</u>, <u>c</u>, and <u>f</u> and at -20° for systems <u>d</u> and <u>e</u>. After 30 minutes, the mixtures were allowed to warm to room temperature and to stand overnight. After treatment with ice-water and extraction with chloroform, the chloroform extract was dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and chromatographed on a silica gel column using chloroform and 1-3% methanolic chloroform as eluents.

Purification of the crude 1(a-f) obtained was by further column chromatography (Florisil-Celite column with chloroform and 0.5-3% methanolic chloroform as eluents) and by recrystallization from carbon tetrachloride-hexane.

Several general characteristics observed for compounds <u>l</u> are as follows: <u>NMR</u>: The ring proton gives in chloroform-<u>d</u> a broad signal in the range $\delta 8.28-8.35$ and, in acetone-<u>d</u>₆, a much sharper signal in the range $\delta 8.51-8.61^{10}$; IR (KBr) includes adsorptions at 3110-3120 cm⁻¹ ¹¹ and at 1384-1392 cm⁻¹; <u>UV</u> (ethanol): λ max values are in the range 229-256 nm with e values of about 10⁴.

The yields, melting points, and elemental analyses for individual compounds are presented in Table 1 and some of the more important spectral characteristics¹² are presented in Table 2.

			Calcd, % Found, %					
Cpd.	Yield,%	mp, ^o C	<u> </u>	<u><u>H</u></u>	<u>N</u>	<u><u>c</u></u>	H	N
la ID IC Id If If	43 36 35 29 33 34	141 -142 ^a 151.5-152 ^b 165.5-166 121.5-122 141.5-142 176 -176.5	76.00 76.57 76.57 71.69 71.69 65.76	5.01 5.57 5.57 5.21 5.21 3.94	18.99 17.86 17.86 16.72 16.72 16.43	75.76 75.94 76.52 71.52 71.28 65.70	5.27 5.59 5.54 5.43 5.03 3.94	18.78 17.68 17.74 16.62 16.53 16.36
^a Lit. ⁶ Found,	mp 141-14 13.92	2 ⁰ C. ^b Lit. ⁷ mp	143 ⁰ C.	^C Ana1.	for Cl:	Calcd,	13.87.	

Table 1. Characteristics of the 3,4-Diaryl-1,2,4-triazoles

Table 2. Some Spectral Characteristics of the 3,4-Diaryl-1,2,4-triazoles

	NME	, δ	IR(KBr),	UV(EtOH)	
Cpd.	≥c <u>H</u>	СН3	1	^λ max, nm	10 ⁴ ε
la	8.58 ^b	_ <u>_</u>	1389	236 ^d	1.51 ^d
1a 1b 1c 1d 1e	8.51 ⁰	2,39 ^D	1390	236	0.42
1c	8.53 ^b , 8.44 ^C	2.31 ^b , 2.28 ^C	1385	244	1.70
ld	8.39 ^C	3.79 ^C	1392	229	2.15
Te	8.44 ^C	3.78 ^C	1389	256	1.64
1f	8.61 ^D		1384	246	1.90

^aIncludes peak at 3120 cm⁻¹ for <u>le</u> and peak at 3110 cm⁻¹ for remainder. ^bIn acetone-<u>d</u>. ^cIn 40% acetone-<u>d</u>. 60% chloroform-<u>d</u> (by wt.). ^cLit: λ_{max} 235.5 nm, el.47 x 10⁴ [M.R. Atkinson, E.A. Parkes, and J.B. Polya, <u>J. Chem</u>. Soc., 4256 (1954)].

The known isomers $2a \ (mp^{13} \ 113-114^{\circ})$ and $2d \ (mp^{14} \ 85^{\circ})$ have melting points appreciably lower than the corresponding <u>la</u> and <u>ld</u>. Although small amounts (< 5%) could have gone undetected, no evidence was obtained for any formation of compounds <u>2</u> and the formation of compounds <u>l</u> in reasonable yields supports the earlier observation⁴ that nucleophilic substitution-cyclization reactions at a trigonal carbon initiated by attack of the anion derived from diazomethyllithium are initiated, to an appreciable extent, by attack of the nitrogen (rather than carbon) terminus.

Acknowledgment

This work was supported by grant 1 RO1 CA 17043-01 (MCHA) from the National Institutes of Health.

References and Notes

- 1. For a recent review, see R.N. Butler, Adv. Heterocyclic Chem., 21, 323 (1977).
- E. Müller and D. Ludsteck, <u>Chem. Ber.</u>, <u>87</u>, 1887 (1954); <u>CAUTION</u>! Diazomethyllithium is reported as explosive. Our procedure does not involve isolation but suitable precautions should be taken.
- See, for example, W.E. Bachmann and W.S. Stuve in "Organic Reactions", Vol. 1, R. Adams, Ed., Wiley, New York, N.Y., pp. 38-62, 1942.
- 4. E. Muller and D. Ludsteck, Chem. Ber., 88, 921 (1955).
- For an example and a brief review of earlier work, see P. Ykman, G. L'Abbé, and G. Smets, <u>Tetrahedron</u>, <u>27</u>, 845 (1971).
- 6. W. Marckwald and A. Bott, Ber. dtsch. chem. Ges., 29, 2914 (1896).
- 7. A. Spassov, E. Golovinsky, and G. Demirov, Chem. Ber., 99, 3734 (1966).
- 8. E. Muller and W. Rundel, Chem. Ber., 90, 1299 (1957).
- A.C. Hontz and E.C. Wagner in "Organic Syntheses", Coll. Vol. IV, N. Rabjohn, Ed., Wiley, New York, N.Y., 1963, pp. 383-386; we recommend substitution of thionyl chloride for phosphorus pentachloride.
- 10. The similarly situated proton in 1,3-dipheny1-1,2,4-triazole is at $\delta 8.35$ in either CH₃CN or CCl₄ as solvent; K.T. Potts and T.H. Crawford, <u>J. Org. Chem.</u>, <u>27</u>, 2631 (1962).
- 11. A triazole (=C-H) stretching frequency has been reported⁷ at 3112 cm⁻¹ for <u>la</u> and at 3100-3140 cm⁻¹ for a series of 1,5-diaryl-1,2,3-triazoles.⁵
- 12. All gave the predicted M⁺ peak in the mass spectrum. Further details, including the NMR and IR spectra, are given in the Ph.D. thesis of Myong-Gi A. Park, Northern Illinois University, May, 1978.
- 13. 0. Dimroth, Ber. dtsch. chem. Ges., 35, 4041 (1902).
- 14. R. Huisgen, L. Mobius, and G. Szeimies, Chem. Ber., 98, 1138 (1965).

(Received in USA 25 August 1978)